

ShriShankaracharya Institute of Professional Management & Technology Department of Information Technology

Class Test – II Session- Jan – June 2023 Month - June Sem- B. Tech. 4thSubject-Data Structure Code- B033411(033)

Time Allowed: 2 hrs. Max Marks: 40

Note: -Attempt any 5 questions. All questions carry equal marks.

Q.N.	Questions	Marks	Levels of Bloom's taxonomy	Cos
1.	Explain Stack with diagram. Also Explain the Algorithm of Push and Pop Operation.	[8]	Analyze	CO2
2.	Convert the following infix expression to postfix expression using stack $A + (B * C - (D/E ^F) * G)* H.$	[8]	Apply	CO2
3.	Explain Tree with its types and Basic Terminology in detail.	[8]	Understand	CO3
4.	Write Short notes:- (a) B-Tree (b) Threaded Binary Tree	[8]	Understand	CO3
5.	Explain Binary Search Tree. Make a Binary search tree for the following sequence of number. 45,36,76,23,89,115,98,39,41,56,69,48	[8]	Apply	CO3
6.	Explain Array and Link List representation of Binary Tree.	[8]	Understand	CO3

ShriShankaracharya Institute of Professional Management & Technology Department of Information Technology

Class Test – II Session- Jan – June 2023 Month - June Sem- B. Tech. 4thSubject-Data Structure Code- B033411(033)

Time Allowed: 2 hrs. Max Marks: 40

Note: -Attempt any 5 questions. All questions carry equal marks.

Q.N.	Questions	Marks	Levels of Bloom's taxonomy	Cos
1.	Explain Stack with diagram. Also Explain the Algorithm of Push and Pop Operation.	[8]	Analyze	CO2
2.	Convert the following infix expression to postfix expression using stack $A + (B * C - (D/E ^F) * G)* H.$	[8]	Apply	CO2
3.	Explain Tree with its types and Basic Terminology in detail.	[8]	Understand	CO3
4.	Write Short notes:- a) B-Tree b) Threaded Binary Tree	[8]	Understand	CO3
5.	Explain Binary Search Tree. Make a Binary search tree for the following sequence of number. 45,36,76,23,89,115,98,39,41,56,69,48	[8]	Apply	CO3
6.	Explain Array and Link List representation of Binary Tree.	[8]	Understand	CO3

Shri Shankaracharya Institute of Professional Management & Technology

Department of Information Technology

Class Test – II Session- Jan-june, 2023 Month-june

Sem- IT 4th Subject- Database management system Time Allowed: 2 hrs Max Marks: 40

Note: - solve any five questions

Q. N.	Questions	Marks	Levels of Bloom's taxonomy	COs
A.	Explain all types of integrity constraints with example.	[8]	Apply	CO2
B.	Explain aggregate function of relational algebra with example.	[8]	Understand	CO2
C.	Explain join operation of relational algebra with example.	[8]	Understand	CO2
D.	Explain loss less join decompositions with example	[8]	Understand	CO3
E.	Elaborate Functional dependencies and its types with example	[8]	Understand	CO3
F.	Explain normalization with example and also elaborate what is the need of normalization in database.	[8]	Understand	CO3
G.	Explain types of SQL commands with proper example.	[8]	Understand	CO3

Shri Shankaracharya Institute of Professional Management & Technology Department of Information Technology

Class Test - II Session- Jan - June 2023 Month- June

Sem- IT 4th, Subject- Operating System, Code- B033414(033)

Time Allowed: 2 hrs Max Marks: 40

Note: - All questions are compulsory.

	Au questions		uestions		Marks	Levels of Bloom's taxonomy	COs
Q.N.					***************************************		
			Unit-	·III		Understanding	CO3
1	Discuss four n	ecessary condi	tions for deadlock	occurrence.	[8]	Onderstanding	
1	Discuss four in						
	1	h following pro			17		
	SVS	stem snapshot.		for the following			
	ii. Ch	neck the system			[8]	Apply	CO3
2	Dunnagg	Allocation	Max	Available			
	Process	X Y Z		X Y Z 4 2 6			
	P0	2 3 5		4 2 0			
	P1	1 3 2	_				
	P2	0 4 3					
	P3	4 2 3	10 0				
	P4	3 1 1	/ 12 0		1		
			Uni	it-IV			
			240077 5001	7 200V 200V and	1		
	a. Given	n memory patit	ons of 100K, 500i	K, 200K, 300K and	1		
	600K	in order, how	vould each of the F	irst-fit, Best-fit and	1		004
	Wors	t-fir algorithm	s place processes	s of 212K, 417K	, [4]	Applying	CO4
	112K	and 426K in	order? Which al	gorithm makes th	e		
	11215	efficient use of	fmemory?				
3	most	efficient use o	memory.		[4]	Applying	CO4
		: 1 a mahina	with 128MB phys	sical memory and			
	b. Cons	sider a memme	a space If the nac	e size is 2KB, wha	at		
	32-b	it virtual addre	ss space. If the pag	109			
	is the	e approximate:	size of the page tab	ole (

121	a. Consider the sequence: 7, 0, 1, 2, 0, 3, 0, there are 3 frames available, find out the	1	1,20		v.
	faults for each of the following algorithms				
	i. FIFO				
	ii. LRU				
	iii. Optimal		[4]	Applying	CO4
		* 2 - 14			
è	b. On a system using simple segmentation	n, compute the			
	physical address for each of the logical	address, given			
	following segment table. If the addre	ss generates a			
4	segment fault, indicate so.	1			
	Segment Base	Length			
	0 330	124 211			
	1 876 111	99			
	3 498	302	[4]	Applying	CO4
	i. 0, 99 ii. 2, 78	1			
	iii. 1, 265				
	iv. 3, 222				
	v. 0, 111				
	Unit-	V			
	Suppose that a disk drive has 5000 cylinders, num	bered 0 to 4999.			
	The drive is currently serving a request at cylin	nder 15 and the			
	previous request was at cylinder 100. The que	eue of pending			
	requests in FIFO order is:	87			
_			[8]	Applying	CO5 🛩
5	86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130.	•			
					7
	Calculate the total head movements required t		~		
2	requests using SSTF, SCAN and C-LOOK of	lisk scheduling			
	algorithms.				

Shri Shankaracharya Institute of Professional Management & Technology Department of Information Technology

Class Test - II Session- Jan. - June, 2023 Month- June

Sem-4th Subject- Analog Electronic Circuits - B033413(033)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Construct and explain Wein Bridge Oscillator.	[8]	Create & Understand	CO5
2.	Discus Darlington Pair.	[8]	Understand	CO3
3.	Discuss various sources of noise in transistor.	[8]	Understand	CO4
⊌ 4.	Derive the expression for current gain and voltage gain for a transistor amplifier circuit using h- parameters.	[8]	Evaluate & Understand	CO3
5.	Construct and explain with a neat diagram, working of two stage RC coupled amplifier.	[8]	Create & Understand	CO4
6.	Discuss negative feedback with respect to input impedance and output impedance.	[8]	Understand	CO5

Shri Shankaracharya Institute of Professional Management & Technology Department of Information Technology

Class Test - II Session- Jan. - June, 2023 Month- June

Sem-4th Subject- Analog Electronic Circuits - B033413(033)

Time Allowed: 2 hrs Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Construct and explain Wein Bridge Oscillator.	[8]	Create & Understand	CO5
2.	Discus Darlington Pair.	[8]	Understand	CO3
3.	Discuss various sources of noise in transistor.	[8]	Understand	CO4
4.	Derive the expression for current gain and voltage gain for a transistor amplifier circuit using h- parameters.	[8]	Evaluate & Understand	CO3
5.	Construct and explain with a neat diagram, working of two stage RC coupled amplifier.	[8]	Create & Understand	CO4
6.	Discuss negative feedback with respect to input impedance and output impedance.	[8]	Understand	CO5

SSIPMT A Session- Jan-Jun, 2023 Shri Shankaracharya Institute of Professional Management & **Technology Department of Information Technology** Subject- Internet of Things Class Test - II Month-June 2023

Time Allowed: 2 hrs.

Code- B0333415 (033)

Sem- 4th

Subject- Internet of Things

Code- B0333415 (033)

Max Marks: 40

>
0
te
1
,
4
Ħ
3
q
-
2
Ę
S
9
2
3
ä.
0
2
E
Ö
*
-
2
6
2 .
0
2
3
7
3.
3
0
9
2
13
3
2
3
5
• -

Note:	Note: - Attempt any 5 questions. Each question carries equal marks.	ual mark	s.	
			Levels of	
Q.N.	Questions	Marks	Bloom's	3
***************************************			taxonomy	000
Q1	Explain various Survey Routing Protocols.	[8]	Understand	СОЗ
	Describe Data Aggregation &	3)))
22	Dissemination with suitable examples.	<u>~</u>	Understand	COS
	Explain various Security Challenges of the	3	•))
Q	Internet of Things.	~	Understand	CQ
	Explain different Design Challenges of the		•)
2	Internet of Things.	<u>«</u>	Understand	CO4
)	Describe the Industry-based IOT	3		
Ş	applications with examples.	<u>~</u>	Understand	CO4
	Write Python code that demonstrates the	2	•)) •
Q	use of various data type in IoT.	[8	Apply	COS

Best of Luck

SSIPMT A Session- Jan-Jun, 2023 Shri Shankaracharya Institute of Professional Management & **Technology Department of Information Technology** Class Test - II Month-June 2023

Note: Attempt any 5 questions. Each question carries equal marks.

Time Allowed: 2 hrs. Max Marks: 40

Note:	Note: - Attempt any 3 questions. Each question carries equal marks.	quai mark	S.	
Q.N.	Questions	Marks	Levels of Bloom's taxonomy	COs
Q1	Explain various Survey Routing Protocols.	[8]	Understand	соз
Q2	Describe Data Aggregation & Dissemination with suitable examples.	[8]	Understand	СОЗ
}	Explain various Security Challenges of the	3		2
Q	Internet of Things.	<u>~</u>	Understand	CQ4
)	Explain different Design Challenges of the	3) }
Q4	Internet of Things.	[8]	Understand	CO4
	Describe the Industry-based IOT)
Q5	applications with examples.	<u></u>	Understand	CO ₄
	Write Python code that demonstrates the	3	•))
Q	use of various data type in IoT.	<u>~</u>	Apply	COS

Best of Luck